
Mastering Terra Mystica: Applying Self-Play to Multi-agent Cooperative Board
Games

Luis Perez
Stanford University

450 Serra Mall
luisperez@cs.stanford.edu

Abstract

In this paper, we explore and compare multiple algo-
rithms for solving the complex strategy game of Terra Mys-
tica, thereafter abbreviated as TM. Previous work in the
area of super-human game-play using AI has proven ef-
fective, with recent break-through for generic algorithms in
games such as Go, Chess, and Shogi [4]. We directly apply
these breakthroughs to a novel state-representation of TM
with the goal of creating an AI that will rival human players.
Specifically, we present initial results of applying AlphaZero
to this state-representation, and analyze the strategies de-
veloped. A brief analysis is presented. We call this modified
algorithm with our novel state-representation AlphaTM. In
the end, we discuss the success and short-comings of this
method by comparing against multiple baselines and typi-
cal human scores. All code used for this paper is available
at on GitHub.

1. Background and Overview

1.1. Task Definition

In this paper, we provide an overview of the infrastruc-
ture, framework, and models required to achieve super-
human level game-play in the game of Terra Mystica (TM)
[1], without any of its expansions 1. The game of TM
involves very-little luck, and is entirely based on strategy
(similar to Chess, Go, and other games which have re-
cently broken to novel Reinforcement Learning such Deep
Q-Learning and Monte-Carlo Tree Search as a form of Pol-
icy Improvement [3] [5]). In fact, the only randomness
arises from pregame set-up, such as players selecting differ-

1There are multiple expansions, most which consists of adding different
Factions to the game or extending the TM Game Map. We hope to have
the time to explore handling these expansions, but do not make this part of
our goal

ent Factions 2, different set of end-round bonus tiles being
selected.

TM is a game played between 2-5 players. For our re-
search, we focus mostly on the adversarial 2-player version
of the game. We do this mostly for computational effi-
ciency, though for each algorithm we present, we discuss
briefly strategies for generalizing them to multiple play-
ers. We also do this so we can stage the game as a zero-
sum two-player game, where players are rewarded for win-
ning/loosing.

TM is a fully-deterministic game whose complexity
arises from the large branching factor and a large number of
possible actions At from a given state, St. There is further
complexity caused by the way in which actions can interact,
discussed further in Section 1.2.

1.2. Input/Output Of System

In order to understand the inputs and outputs of our sys-
tem, the game of TM must be fully understood. We lay out
the important aspects of a given state below, according to
the standard rules [2].

The game of TM consists of a terrain board that’s split
into 9× 13 terrain tiles. The board is fixed, but each terrain
tile can be terra-formed (changed) into any of the 7 distinct
terrains (plus water, which cannot be modified). Players can
only expand onto terrain which belongs to them. Further-
more, TM also has a mini-game which consists of a Cult-
Board where individual players can choose to move up in
each of the cult-tracks throughout game-play.

The initial state of the game consists of players selecting
initial starting positions for their original dwellings.

At each time-step, the player has a certain amount of re-
sources, consisting of Workers, Priests, Power, and Coin.
The player also has an associated number of VPs.

Throughout the game, the goal of each player is to ac-
cumulate as many VPs as possible. The player with the

2A Faction essentially restricts each Player to particular areas of the
map, as well as to special actions and cost functions for building

ar
X

iv
:2

10
2.

10
54

0v
1 

 [
cs

.M
A

] 
 2

1 
Fe

b 
20

21

https://github.com/kandluis/terrazero


highest number of VPs at the end of the game is the winner.
From the definition above, the main emphasis of our sys-

tem is the task of taking a single state representation St at a
particular time-step, and outputting an action to take to con-
tinue game-play for the current player. As such, the input
of our system consists of the following information, fully
representative of the state of the game:

1. Current terrain configuration. The terrain configura-
tion consists of multiple pieces of information. For
each terrain tile, we will receive as input:

(a) The current color of the tile. This gives us in-
formation not only about which player currently
controls the terrain, but also which terrains can
be expanded into.

(b) The current level of development for the ter-
rain. For the state of development, we note that
each terrain tile can be one of (1) UNDEVEL-
OPED, (2) DWELLING, (3) TRADING POST,
(4) SANCTUARY, or (5) STRONGHOLD.

(c) The current end-of-round bonus as well as future
end-of-round bonus tiles.

(d) Which special actions are currently available for
use.

2. For each player, we also receive the following infor-
mation.

(a) Current level of shipping ability, Current level of
spade ability, the current number of VPs that the
player has.

(b) The current number of towns the player has (as
well as which town is owned), The current num-
ber of worker available to the player, the current
number of coins available to the player, the cur-
rent number of LV1, LV2, and LV3 power tokens.

(c) The current number of priests available to the
player.

(d) Which bonus tiles are currently owned by the
player.

(e) The amount of income the player currently pro-
duces. This is simply the power, coins, priests,
and worker income for the player.

The above is a brief summary of the input to our algo-
rithm. However, in general, the input to the algorithm is a
complete definition of the game state at a particular turn.
Note that Terra Mystica does not have any dependencies in
previous moves, and is completely Markovian. As such,
modeling the game as an MDP is fully realizable, and is
simply a question of incorporating all the features of the
state.

1.3. Output and Evaluation Metrics

For a given state, the output of our algorithm will consist
of an action which the player can take to continue to the
next state of the game. Actions in TM are quite varied, and
we do not fully enumerate them here. In general, however,
there are eight possible actions:

1. Convert and build.

2. Advance on the shipping ability.

3. Advance on the spade ability.

4. Upgrade a building.

5. Sacrifice a priest and move up on the cult track.

6. Claim a special action from the board.

7. Some other special ability (varies by class)

8. Pass and end the current turn.

We will evaluate our agents using the standard simula-
tor. The main metric for evaluation will be the maximum
score achieved by our agent in self-play when winning, as
well as the maximum score achieved against a set of human
competitors.

2. Experimental Approach
Developing an AI agent that can play well will be ex-

tremely challenging. Even current heuristic-based agents
have difficulty scoring positions. The state-action space for
TM is extremely large. Games typically have trees that are
> 50 moves deep (per player) and which have a branching
factor of > 10.

We can approach this game as a typical min-max search-
problem. Simple approaches would simply be depth-limited
alpha-beta pruning similar to what we used in PacMan.
These approaches can be tweaked for efficiency, and are es-
sentially what the current AIs use.

Further improvement can be made to these approaches
by attempting to improve on the Eval functions.

However, the main contribution of this paper will be to
apply more novel approaches to a custom state-space rep-
resentation of the game. In fact, we will be attempting to
apply Q-Learning – specifically DQNs (as per [3], [5], and
[4]).

2.1. Deep Q-Learning Methods for Terra Mystica

Existing open-source AIs for TM are based on combi-
nation of sophisticated search techniques (such as depth-
limited, alpha-beta search, domain-specific adaptations, and
handcrafted evaluation functions refined by expert human
players). Most of these AIs fail to play at a competitive
level against human players. The space of open-source AIs
is relatively small, mainly due to the newness of TM.



2.2. Alpha Zero for TM

In this section, we describe the main methods we use for
training our agent. In particular, we place heavy emphasis
on the methods described by AlphaGo[3], AlphaGoZero,
[5], and AlphaZero [4] with pertinent modifications made
for our specific problem domain.

Our main method will be a modification of the Alpha
Zero [4] algorithm which was described in detail. We chose
this algorithm over the methods described for Alpha Go [3]
for two main reasons:

1. The Alpha Zero algorithm is a zero-knowledge rein-
forcement learning algorithm. This is well-suited for
our purposes, given that we can perfectly simulate
game-play.

2. The Alpha Zero algorithm is a simplification over the
dual-network architecture used for AlphaGo.

As such, our goal is to demonstrate and develop a slightly
modified general-purpose reinforcement learning algorithm
which can achieve super-human performance tabula-rasa on
TM.

2.2.1 TM Specific Challenges

We first introduce some of the TM-specific challenges our
algorithm must overcome.

1. Unlike the game of Go, the rules of TM are not trans-
lationally invariant. The rules of TM are position-
dependent – the most obvious way of seeing this is
that each terrain-tile and patterns of terrains are dif-
ferent, making certain actions impossible from certain
positions (or extremely costly). This is not particularly
well-suited for the weight-sharing structure of Convo-
lutional Neural Networks.

2. Unlike the game of Go, the rules for TM are asymmet-
ric. We can, again, trivially see this by noting that the
board game board itself 7 has little symmetry.

3. The game-board is not easily quantized to exploit po-
sitional advantages. Unlike games where the Alp-
haZero algorithm has been previously applied (such as
Go/Shogi/Chess), the TM map is not rectangular. In
fact, each “position” has 6 neighbors, which is not eas-
ily representable in matrix form for CNNs.

4. The action space is significantly more complex and hi-
erarchical, with multiple possible “mini”-games being
played. Unlike other games where similar approaches
have been applied, this action-space is extremely com-
plex. To see this, we detail the action-spaces for other
games below.

(a) The initial DQN approach for Atari games had
an output action space of dimension 18 (though
some games had only 4 possible actions, the
maximum number of actions was 18 and this was
represented simply as a 18-dimensional vector
representing a softmax probability distribution).

(b) For Go, the output actions space was similarly
a 19 × 19 + 1 probability distribution over the
locations on which to place a stone.

(c) Even for Chess and Shogi, the action space sim-
ilarly consisted of all legal destinations of all
player’s pieces on the board. While this is very
expansive and more similar to what we expect
for TM, TM nonetheless has additional complex-
ity in that some actions are inherently hierarchi-
cal. You must first decide if you want to build,
then decided where to build, and finally decide
what to build. This involves defining an output
actions-space which is significantly more com-
plex than anything we’ve seen in the literature.
For comparison, in [4] the output space consists
of a stack of planes of 8 × 8 × 73. Each of the
64 positions identifies a piece to be moved, with
the 73 associated layers identifying exactly how
the piece will be moved. As can be seen, this is
essentially a two-level decision tree (select piece
followed by selecting how to move the piece). In
TM, the action-space is far more varied.

5. The next challenge is that TM is not a binary win-lose
situation, as is the case in Go. Instead, we must seek
to maximize our score relative to other players. Ad-
ditionally, in TM, there is always the possibility of a
tie.

6. Another challenge present in TM not present in other
stated games is the fact that there exist a limited num-
ber of resources in the game. Each player has a limited
number of workers/priests/coin with which a sequence
of actions must be selected.

7. Furthermore, TM is now a multi-player game (not two-
player). For our purposes, however, we leave exploring
this problem to later research. We focus exclusively
on a game between two fixed factions (Engineers and
Halflings).

2.3. Input Representation

Unless otherwise specified, we leave the training and
search algorithm large unmodified from those presented in
[4] and [5]. We will described the algorithm, nonetheless,
in detail in subsequent sections. For now, we focus on pre-
sented the input representation of our game state.



2.3.1 The Game Board

We begin by noting that the TM GameBoard 7 is naturally
represented as 13 × 9 hexagonal grid. As mentioned in the
challenges section, this presents a unique problem since for
each intuitive “tile“, we have 6 rather than the the 4 (as in
Go, Chess, and Shogi). Furthermore, unlike chess where
a natural dilation of the convolution will cover additional
tangent spots equally (expanding to 8), the hexagonal nature
makes TM particularly interesting.

However, a particular peculiarity of TM is that we can
think of each “row” of tiles as being shifted by “half” a
tile, thereby becoming “neighbors”. With this approach, we
chose to instead represent the TM board as a 9 × 26 grid,
where each tile is horizontally doubled. Our terrain rep-
resentation of the map then begins as a 9 × 26 × 8 stack
of layers. Each layer is a binary encoding of the terrain-
type for each tile. The 7 main types are {PLAIN, SWAMP,
LAKE, FOREST, MOUNTAIN, WASTELAND, DESERT
}. It as a possible action to “terra-form“ any of these tiles
into any of the other available tiles, therefore why we must
maintain all 7 of them as part of our configuration. The 8-
th layer actually remains constant throughout the game, as
this layer represents the water-ways and cannot be modified.
Note that even-row (B,D,F,H) are padded at columns 0
and 25 with WATER tiles.

The next feature which we tackle is the representation
of the structures which can be built on each terrain tile.
As part of the rules of TM, a structure can only exists
on a terrain which corresponds to it’s player’s terrain. As
such, for each tile we only need to consider the 5 possi-
ble structures, {DWELLING, TRADING POST, SANC-
TUARY, TEMPLE, STRONGHOLD }. We encode these
as an additional five-layers in our grid. Our representation
is now a 9× 26× 13 stack.

We now proceed to add a set of constant layers. First, to
represent each of the 5 special-actions, we add 6-constant
layers which will be either 0 or 1 signifying whether a par-
ticular action is available (0) or take (1). This gives us a
9× 26× 19 representation.

To represent the scoring tiles (of which there are 8), we
add 8×6 constant layers (either all 1 or all 0) indicating their
presence in each of the 6 rounds. This gives us a 9×26×75
stack.

For favor tiles, there are 12 distinct favor tiles. We add 12
layers each specifying the number of favor tiles remaining.
This gives use 9× 26× 87.

For the bonus tiles, we add 9 constant layers. These 9
layers specify which favor tiles were selected for this game
(only P + 3 cards are ever in play). This gives us a game-
board representation which is of size 9× 26× 96

2.3.2 Player Representation and Resource Limitations

We now introduce another particularity of TM, which is the
fact that each player has a different amount of resources
which must be handled with care. This is something which
is not treated in other games, since the resource limitation
does not exist in Go, Chess, or Shogi (other than those fully
encoded by the state of the board).

With that in-mind, we move to the task of encoding each
player. To be fully generic, we scale this representation with
the number of players playing the game, in our case, P = 2.

To do this, for each player, we add constant layers spec-
ifying: (1) number of workers, (2) number of priests, (3)
number of coins, (4) power in bowl I, (5) power in bowl
II, (6) power in bowl III, (7) the cost to terraform, (8) ship-
ping distance, (9-12) positions in each of the 4 cult tracks,
(13-17) number of building built of each type, (18) cur-
rent score, (19) next round worker income, (20) next round
priest income, (21) next round coin income, (22) next round
power income, (23) number of available bridges. This gives
us a total of 23P additional layers required to specify infor-
mation about the player resources.

Next, we consider representing the location of bridges.
We add P layers, each corresponding to each player, in a
fixed order. The each layer is a bit representing the exis-
tence/absence of a bridge at a particular location. This gives
us 24P layers.

We’ve already considered the positions of the player in
the cult-track. The only thing left is the tiles which the
player may have. We add 9 + 10 + 5 layers to each player.
The first 9 specify which bonus card the player currently
holds. The next 10 specify which favor tiles the player cur-
rently owns. And the last 5 specify how many town tiles
of each type the player currently holds. This gives use an
additional 24P layers.

We end with a complete stack of dimension 9×26×24P
to represent P players.

2.3.3 Putting it All Together

Finally, we add 14 layers to specify which of the 14 possible
factions the neural network should play as. This gives us an
input representation of size 9×26×(48P+110). See Table
1 which places this into context. In our case, this becomes
9× 26× 206.

2.4. Action Space Representation

Terra Mystica is a complex game, where actions are sig-
nificantly varied. In fact, it is not immediately obvious how
to even represent all of the possible actions. We provide a
brief overview here of our approach.

In general, there are 8 possible actions in TM which are,
generally speaking, quite distinct. In general, we output all
possible actions and assign a probability. Illegal actions



Domain Input Dimensions Total Size
Atari 2600 84 x 84 x 4 28,224
Go 19 x 19 x 17 6,137
Chess 8 x 8 x 119 7,616
Shogi 9 x 9 x 362 29,322
Terra Mystica 9 x 26 x 206 48,204
ImageNet 224x224x1 50,176

Table 1. Comparison of input sizes for different domain of both
games. For reference, typical CNN domain of ImageNet is also
included.

are removed by setting their probabilities to zero and re-
normalizing the remaining actions. Actions are considered
legal as long as they can be legally performed during that
turn (ie, a player can and will burn power/workers/etc. in
order to perform the required action. We could technically
add additional actios for each of this possibilities, but this
vastly increases the complexity.

1. Terra Form and Build: This action consists of (1) se-
lecting a location (2) selecting a terrain to terraform to
(if any) and (3) optionally selecting to build. We can
represent this process as a vector of size 9×13×(7×2).
The 9× 13 is selecting a location, while the first 7 lay-
ers the probability of terraforming into one of the 7
terrains and not building, and the last 7 the probability
of terraforming into each of the 7 terrains and building.

2. Advancing on the Shipping Track: The player may
choose to advance on the shipping track. This consists
of a single additional value encoding the probability of
advancement.

3. : Lowering Spade Exchange Rate: The player may
choose to advance on the spade track. This consists
of a single additional value encoding the probability of
choosing to advance on the spade track.

4. Upgrading a Structure: This action consists of (1) se-
lecting a location, (2) selecting which structure to up-
grade to. Depending on the location and existing struc-
ture, some actions may be illegal. We can represent
this process as a vector of size 9 × 13 × 4 specifying
which location as well as the requested upgrade to the
structure (DWELLING to TRADING POST, TRAD-
ING POST to STRONG HOLD, TRADING POST to
TEMPLE, or TEMPLE to SANCTUARY).

Note that when a structure is built, it’s possible for the
opponents to trade victory points for power. While this
is an interesting aspect of the game, we ignore for our
purposes and assume players will never chose to take
additional power.

5. Send A Priest to the Order of A Cult: In this action,
the player choose to send his or her priest to one of

four possible cults. Additionally, the player must de-
termine if he wants to send his priest to advance 3, 2 or
1 spaces – some of which maybe illegal moves. We can
represent this simply as a 4× 3 vector of probabilities.

6. Take a Board Power Action: There are 6 available
power actions on the board. We represent this as a 6×1
vector indicating which power action the player wishes
to take. Actions can only be take once per round.

7. Take a Special Action: There are multiple possible
“special“ actions a player may choose to take. For ex-
ample, there’s a (1) spade bonus tile, (2) cult favor tile
as well as special action allowed by the faction (3). As
such, we output a 3 × 1 vector in this case for each of
the above mentioned actions, many of which may be
illegal.

8. Pass: The player may chose to pass. If the first to pass,
the player will become the first to go next round. For
this action, the player must also chose which bonus tile
to take. There are 9 possible bonus tiles (some which
won’t be available, either because they were never in
play or because the other players have taken them). As
such, we represent this action by a 9× 1 vector.

9. Miscellaneous: At any point during game-play for this
player, it may become the case that a town is founded.
For each player round, we also output a 5×1 vector of
probabilities specifying which town tile to take in the
even this has occurred. These probabilities are normal-
ized independently of the other actions, as they are not
exclusive, though most of the time they will be ignored
since towns are founded relatively rarely (two or three
times per game).

2.4.1 Concluding Remarks for Action Space Represen-
tation

As described above, this leads to a relatively complex
action-space representation. In fact, we’ll end-up outputting
a 9×13×18+4×3+20+5 We summarize the action-space
representation in Table 2 and provide a few other methods
fore reference.

Domain Input Dimensions Total Size
Atari 2600 18 x 1 18
Go 19 x 19 + 1 362
Chess 8 x 8 x 73 4,672
Shogi 9 x 9 x 139 11,259
Terra Mystica 9 x 13 x 18 + 4x3 + 25 2,143
ImageNet 1000x1 1000

Table 2. Comparison of action space sizes for different domain of
both games. For ImageNet, we consider the class-distribution the
actions-space



2.5. Deep Q-Learning with MCTS Algorithm and
Modifications

In this section, we present our main algorithm and the
modifications we’ve made so-far to make it better suited for
our state-space and action-space. We describe in detail the
algorithm for completeness, despite the algorithm remain-
ing mostly the same as that used in [4] and presented in
detail in [5].

2.5.1 Major Modifications

The main modifications to the algorithm are mostly per-
formed on the architecture of the neural network.

1. We extend the concept of introduced in [5] of “dual”
heads to “multi-head“ thereby providing us with mul-
tiple differing final processing steps.

2. We modify the output and input dimensions accord-
ingly.

2.5.2 Overview of Approach

We make use of a deep neural network (architecture de-
scribed in Section 2.5.5) (p,m, v) = fθ(s) with parame-
ters θ, state-representations s, as described in Section 2.3,
output action-space textbfp, as described in Section 2.4,
additional action-information as m as described in Section
2.4.1, and a scalar value v that estimates the expected output
z from position s v ≈ E[z | s]. The values from this neu-
ral network are then used to guide MCTS, and the resulting
move-probabilities and game output are used to iteratively
update the weights for the network.

2.5.3 Monte Carlo Tree Search

We provide a brief overview of the MCTS algorithm used.
We assume some familiarity with how MCTS works. In
general, there are three phases which need to be considered.
For any given state St which we call the root-state (this is
the current state of gameplay), the algorithm simulates 800
iterations of gameplay. We note that AlphaGoZero [5] does
1600 iterations and AlphaZero does [4] also does 800.

At each node, we perform a search until a leaf-node is
found. A leaf-node is a game-state which has never-been
encountered before. The search algorithm is relatively sim-
ple, as shown below and as illustrated in Figure 1. Note that
the algorithm plays for the best possible move, with some
bias given to moves with low-visit counts.

def Search(s):
if IsEnd(s): return R
if IsLeaf(s): return Expand(s)

Figure 1. Monte Carlo Tree Search: Selection Phase. During this
phase, starting from the root node, the algorithm selects the op-
timal path until reaching an un-expanded leaf node. In the case
above, we select left action, then the right action, reaching a new,
un-expanded board state.

while seen(S):
max_u, best_a = -INF, -1
for a in Actions(S) :

u = Q(s,a) + c*P(s,a)

*sqrt(visit_count(s)))
/(1+action_count(s,a))

if u>max_u:
max_u = u
best_a = a

s = Successor(s, best_a)
v = search(sp, game, nnet)

From above, we can see that as a sub-routing of search
we have the ‘Expand‘ algorithm. The expansion algorithm
is used to initialize non-terminal, unseen states of the game
S as follow.

def Expand(s):
v, p = NN(s)
InitializeCounts(s)
StoreP(s, p)
return v

Where ‘InitializeCounts‘ simply initializes the counts for
the new node (1 visit, 0 for each action). We also initialize
all Q(s, a) = 0 and store the values predicted by our NN .
Intuitively, we’ve now expanded the depth of our search
tree, as illustrated in Figure 2.

After the termination of the simulation (which ended ei-
ther with an estimated v by the NN or an actually R), we
back-propagate the result by updating the corresponding
Q(s, a) values using the formula:

Q(s, a) = V (Succ(s, a))

This is outlined in Figure 3.



Figure 2. Monte Carlo Tree Search: Expansion Phase. During
this phase, a leaf-node is “expanded”. This is where the neural
network comes in. At the leaf-node, we process the state SL to
retrieve p, v = fθ(SL)

, which is a vector of probabilities for the actions that are
possible and a value function.

Figure 3. Monte Carlo Tree Search: Back-propagation Phase. Dur-
ing this phase, we use the value v estimated at the leaf-node and
propagate this information back-up the tree (along the path-taken)
to update the stored Q(s, a) values.

2.5.4 Neural Network Training

The training can be summarized relatively straightfor-
wardly. We batchN (withN = 128) tuples (s, p, v) and use
this to train, with the loss presented in AlphaZero [4]. We
use c = 1 to for our training. We perform back-propagation
with this batch of data, and continue our games of self-play
using the newly updated neural network. This is all per-
formed synchronously.

2.5.5 Neural Network Architecture

We first describe the architecture of our neural network. For
brief overview, see Figure 4. The input is a 9 × 26 × 206
image stack as described in Section 2.3.3. Note that un-
like other games, our representation includes no temporal-

Figure 4. Detailed diagram of the multi-headed architecture ex-
plored for the game of Terra Mystica.

information (T = 1), both for computational efficiency and
due to the fact that the game is fully encoded with the cur-
rent state.

The input features st are processed by a residual tower
which consists of a single convolution block followed by
19 residual blocks, as per [5]. The first convolution block
consists of 256 filters of kernel size 3×3 with stride 1, batch
normalization, and a ReLU non-linearity.

Figure 5. Architecture Diagram for shared processing of the state
space features. An initial convolution block is used to standard-
ize the number of features, which is then followed by 18 residual
blocks.

Each residual block applies the following modules, in
sequence, to its input. A convolution of 256 filters of ker-
nel size 3 × 3 with stride 1, batch-normalization, and a
ReLU non-linearity, followed by a second convolution of
256 filters of kernel size 3 × 3 with stride 1, and batch-
normalization. The input is then added to this, a ReLu ap-
plied, and the final output taken as input for the next block.
See Figure 5 for a reference.

The output of the residual tower is passed into multiple
separate ’heads’ for computing the policy, value, and mis-
cellaneous information. The heads in charge of computing
the policy apply the following modules, which we guess at



given that the AlphaZero Paper [4] does not discuss in detail
how the heads are modified to handle the final values. See
Figure 6 for an overview diagram.

Figure 6. Details on multi-headed architecture for Neural Network.
The final output state of the residual tower is fed into two paths. (1)
On the left is the policy network. (2) On the right is the value esti-
mator. The policy network is further split into two, for computing
two disjoint distributions over the action space, each normalized
independently.

For the policy, we have one head that applies a convolu-
tion of 64 filters with kernel size 2×2 with stride 2 along the
horizontal direction, reducing our map to 9× 13× 64. This
convolution is followed by batch normalization, a ReLU
non-linearity.

We then split this head into two further heads. We then
apply an FC layer which outputs a vector of 9×13×18+32
which we interpret as discussed in Section 2.4, represent-
ing the mutually exclusive possible actions that a player can
take.

For the second part, we apply a further convolution with
1 filter of size 1×1, reducing our input to 9×13. This is fol-
lowed by a batch-normalization layer followed by a ReLU.
We then apply a FC layer further producing a probability
distribution over a 5× 1 vector.

For the value head, we apply a convolution of 32 filters
of kernel size 1 × 1 with stride 1 to the, followed by batch
normalization and a ReLU unit. We follow this with an FC
to 264 units, a ReLU, another FC to a scalar, and a tanh-
nonlinearity to output a scalar in the range [−1, 1].

3. Experimental Results

Given the complexity of the problem we’re facing, the
majority of the work has been spent developing the re-
inforcement learning pipeline with an implementation of
MCTS. The pipeline appears to not train well, even after
multiple games of self-play.

3.1. Baselines

For the base-lines, we compare the final scores achieved
by existing AI agents. We see their results in Table 4. The
results demonstrate that current AIs are fairly capable at
scoring highly during games of self-play.

Simulated Self-Play Average Scores - AI
Faction Average Score Sampled Games
Halfing 92.21 1000
Engineers 77.12 1000

Table 3. Self-play easy AI agent: AI Level5 from [6]

3.2. Oracle

A second comparison, showing in Table 4, demonstrates
the skill we would expect to achieve. These are the average
scores of the best human players, averaged over online data.

Average Human Score (2p)
Faction Average Score Sampled Games
Halfling 133.32 2227
Engineers 127.72 1543

Table 4. Average human scores by faction for a two-player TM
games online.

3.3. AlphaTM

The results for AlphaTM are presented below. Training
appears to not have taken place, at least not with the archi-
tecture and number of iterations which we executed. The AI
still appears to play randomly, specially at later, and more
crucial, stages of the game. See Table 5.

Simulated Self-Play Average Scores - AlphaTM
Faction Average Score Training Iterations
Halfing 32.11 10,000
Engineers 34.12 10,000

Table 5. Our Self-Play AI after 10,000 training iterations, with
average score over final 1000 games.

Overall, we summarize:

• The AI plays poorly in early stages of the game, though
it seems to learn to build structures adjacent to other
players.

• As the game progresses, the actions of the agent are
indistinguishable from random. A cursory analysis of
π reveals these states are basically random. It appears
that the AI is not learning to generalize, or has simple
not played sufficient games.



4. Future Work
Given the poor results from the experiments above, many

avenues exists for future work. In particular, we propose a
few extensions to the above approach below.

4.1. Generalizing to Multi-Player Game

In the general context, the reinforcement learning
pipeline that performed the best (with some semblance of
learning) is the one where the game was presented as a zero-
sum two-player game explicitly (I win, you lose). While
the neural network architecture presented can readily gen-
eralize to more players, the theory behind the learning algo-
rithm will no-longer hold. The game is no longer zero-sum.

4.2. New Architectures and Improvements

Another area of future work is experimenting with fur-
ther architectures and general improvement, with possible
hyper parameter tuning.

5. Appendices

Figure 7. The Terra Mystica Game Board and Its Representation

References
[1] BoardGeek. Terra mystica: Statistics, 2011. 1
[2] M. LLC. Terra mystica: Rule book, 2010. 1
[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,

G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Pan-
neershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the
game of go with deep neural networks and tree search. Nature,
529:484 EP –, Jan 2016. Article. 1, 2, 3

[4] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai,
A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. P.
Lillicrap, K. Simonyan, and D. Hassabis. Mastering chess
and shogi by self-play with a general reinforcement learning
algorithm. CoRR, abs/1712.01815, 2017. 1, 2, 3, 6, 7, 8

[5] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton,

Figure 8. The Terra Mystica Cult Track

Figure 9. The Terra Mystica Board Representation

Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche,
T. Graepel, and D. Hassabis. Mastering the game of go with-
out human knowledge. Nature, 550:354 EP –, Oct 2017. Ar-
ticle. 1, 2, 3, 6, 7

[6] tmai. Terra mystic ai implementations, 2018. 8


